admin
664
עריכות
על מנת לערוך סיכומים נדרש לפתוח חשבון.
אין תקציר עריכה |
Ran.Rutenberg (שיחה | תרומות) אין תקציר עריכה |
||
שורה 1: | שורה 1: | ||
משוואת הישר היא משוואה מהסוג <math>y=m\cdot x+n</math> | משוואת הישר היא משוואה מהסוג <math>y=m\cdot x+n</math> | ||
האיבר m מייצג את השיפוע. את m ניתן לחשב בעזרת הנוסחה: <math>m=\frac{y_1 -y_0}{x_1 -x_0}</math> בהנתן שתי נקודות ידועות: <math>\left(x_0,y_0\right)</math> ו- <math>\left(x_1,y_1\right)</math> שאינן נמצאות על ישר אנכי (יש להן ערכי x שונים). השיפוע מייצג את קצב השינוי של y ביחס ל- x. | האיבר m מייצג את השיפוע, והאיבר n הוא לכיד ה- y של הישר (נקודת החיתוך עם ציר y). את m ניתן לחשב בעזרת הנוסחה: <math>m=\frac{y_1 -y_0}{x_1 -x_0}</math> בהנתן שתי נקודות ידועות: <math>\left(x_0,y_0\right)</math> ו- <math>\left(x_1,y_1\right)</math> שאינן נמצאות על ישר אנכי (יש להן ערכי x שונים). השיפוע מייצג את קצב השינוי של y ביחס ל- x. | ||
כל קו ישר (שאינו מאונך) עובר דרך הנקודה <math>\left(0,n\right)</math>. מכאן נובע כי ערכו של הקבוע הוא ערך ה- y בנק' החיתוך עם ציר y. | כל קו ישר (שאינו מאונך) עובר דרך הנקודה <math>\left(0,n\right)</math>. מכאן נובע כי ערכו של הקבוע הוא ערך ה- y בנק' החיתוך עם ציר y. | ||
שורה 10: | שורה 10: | ||
===משפטים=== | ===משפטים=== | ||
#ישרים מקבילים זה לזה אם ורק אם שיפועיהם שווים זה לזה: <math>m_1=m_2</math>. | #ישרים מקבילים זה לזה אם ורק אם שיפועיהם שווים זה לזה: <math>m_1=m_2</math> ולכידי ה- y שלהם שונים: <math>n_1\neq n_2</math>. אם השיפועים שווים אבל וגם הלכידים שווים, אז הישרים מתלכדים. | ||
#ישרים ניצבים זה לזה אם ורק אם מכפלת שיפועיהם היא 1- (בתנאי שאף אחד מהם הוא לא מאונך): <math>m_1 m_2 =-1</math>. | #ישרים ניצבים זה לזה אם ורק אם מכפלת שיפועיהם היא 1- (בתנאי שאף אחד מהם הוא לא מאונך): <math>m_1 m_2 =-1</math>. | ||
#השיפוע m של ישר לא אנכי וזווית הנטייה שלו <math>\phi</math> קשורים על ידי: <math>m=\tan{\phi}</math>. | #השיפוע m של ישר לא אנכי וזווית הנטייה שלו <math>\phi</math> קשורים על ידי: <math>m=\tan{\phi}</math>. | ||
[[קטגוריה:מתמטיקה]] | [[קטגוריה:מתמטיקה]] |