על מנת לערוך סיכומים נדרש לפתוח חשבון.
התפלגויות: הבדלים בין גרסאות בדף
אין תקציר עריכה |
אין תקציר עריכה |
||
(10 גרסאות ביניים של 2 משתמשים אינן מוצגות) | |||
שורה 1: | שורה 1: | ||
חזרה ל[[הסתברות]] | |||
---- | |||
==התפלגויות – סיכום== | ==התפלגויות – סיכום== | ||
שורה 13: | שורה 16: | ||
ונסמן[[Image:Pilu13.JPG]] הסבר: | |||
יש אוכלוסיה של N אנשים. | |||
Ri אנשים מצביעים עבור מפלגה i כאשר R1+R2+…+Rd=N. | |||
לוקחים מדגם של n אנשים. | |||
אז Xi הוא מספר הבוחרים של מפלגה i שהתקבל במדגם | |||
===התפלגות פואסון=== | |||
X משתנה מקרי המקבל את הערכים...,0,1,2 הוא משתנה מקרי פואסוני עם הפרמטר[[Image:Gggg.JPG]] , אם לכל [[Image:Ggg-2.JPG]]מתקיים | |||
[[Image:Pilu2.jpg|left]] | |||
שורה 34: | שורה 43: | ||
X משתנה מקרי גיאומוטרי עם הפרמטר p אם עורכים ניסויים, הסתברות ההצלחה בכל ניסוי היא P וההסתברות להצלחה ראשונה בנסיון ה- K היא | X משתנה מקרי גיאומוטרי עם הפרמטר p אם עורכים ניסויים, הסתברות ההצלחה בכל ניסוי היא P וההסתברות להצלחה ראשונה בנסיון ה- K היא | ||
[[Image:Pilu3.jpg|left]] | [[Image:Pilu3.jpg|left]] | ||
===התפלגות בינומית:=== | |||
X משתנה מקרי בינומי אם עורכים n ניסויי ברנולי, ההסתברות להצלחה בכל ניסוי היא p וההסתברות לקבל בדיוק k הצלחות היא: | |||
[[Image:Pilu4.JPG|left]] | |||
===התפלגות בינומית שלילית:=== | |||
X משתנה מקרי בינומי שלילי אם עורכים ניסויים בלתי תלויים, ההסתברות להצלחה בכל ניסוי היא p וההסתברות לקבל את m הצלחות בk ניסויים: | |||
[[Image:Pilu5.JPG|left]] | |||
===התפלגות היפרגיאומטרית:=== | |||
בוחרים באקראי (ובלי החזרה) מדגם בגודל n, מתוך כד המכיל N כדורים מתוכם m לבנים והשאר שחורים. X מ"מ היפרגיאומטרי מתאר את מספר הכדורים הלבנים שנבחו. | |||
[[Image:Pilu6.JPG|left]] | |||
===התפלגות מולטינומית=== | |||
מבצעים N ניסויים בלתי תלויים . לכל ניסוי קיימות k תוצאות אפשריות כך שההסתברות לתוצאה i היא [[Image:Pilu7.JPG]] ומתקיים[[Image:Pilu8.JPG]] | |||
[[Image:Pilu9.JPG]]הוא מספר התוצאות מסוג i שהתקבלו ב-N הניסויים | |||
[[Image:Pilu10.JPG|left]] | |||
===התפלגות היפרגיאומטרית הרב מימדית=== | |||
נאמר שהוקטור[[Image:Pilu11.JPG]] מפולג היפר גיאומטרי עם הפרמטרים: | |||
[[Image:Pilu12.JPG|left]] | |||
ונסמן[[Image:Pilu13.JPG]] הסבר: | |||
יש אוכלוסיה של N אנשים. | |||
Ri אנשים מצביעים עבור מפלגה i כאשר R1+R2+…+Rd=N. | |||
לוקחים מדגם של n אנשים. | |||
אז Xi הוא מספר הבוחרים של מפלגה i שהתקבל במדגם. | |||
[[Category:מתמטיקה]] |
גרסה אחרונה מ־15:56, 28 ביוני 2006
חזרה להסתברות
התפלגויות – סיכום
1התפלגות אחידה – יוניפורמית
X הוא מ"מ מפולג אחיד על הקטע [1,N] אם הוא מציין נקודה שנבחרה באקראי בקטע שבין1 ל N.
ונסמן הסבר:
יש אוכלוסיה של N אנשים.
Ri אנשים מצביעים עבור מפלגה i כאשר R1+R2+…+Rd=N.
לוקחים מדגם של n אנשים.
אז Xi הוא מספר הבוחרים של מפלגה i שהתקבל במדגם
התפלגות פואסון
X משתנה מקרי המקבל את הערכים...,0,1,2 הוא משתנה מקרי פואסוני עם הפרמטר , אם לכל מתקיים
התפלגות גיאומטרית:
X משתנה מקרי גיאומוטרי עם הפרמטר p אם עורכים ניסויים, הסתברות ההצלחה בכל ניסוי היא P וההסתברות להצלחה ראשונה בנסיון ה- K היא
התפלגות בינומית:
X משתנה מקרי בינומי אם עורכים n ניסויי ברנולי, ההסתברות להצלחה בכל ניסוי היא p וההסתברות לקבל בדיוק k הצלחות היא:
התפלגות בינומית שלילית:
X משתנה מקרי בינומי שלילי אם עורכים ניסויים בלתי תלויים, ההסתברות להצלחה בכל ניסוי היא p וההסתברות לקבל את m הצלחות בk ניסויים:
התפלגות היפרגיאומטרית:
בוחרים באקראי (ובלי החזרה) מדגם בגודל n, מתוך כד המכיל N כדורים מתוכם m לבנים והשאר שחורים. X מ"מ היפרגיאומטרי מתאר את מספר הכדורים הלבנים שנבחו.
התפלגות מולטינומית
מבצעים N ניסויים בלתי תלויים . לכל ניסוי קיימות k תוצאות אפשריות כך שההסתברות לתוצאה i היא ומתקיים הוא מספר התוצאות מסוג i שהתקבלו ב-N הניסויים
התפלגות היפרגיאומטרית הרב מימדית
נאמר שהוקטור מפולג היפר גיאומטרי עם הפרמטרים:
ונסמן הסבר: יש אוכלוסיה של N אנשים. Ri אנשים מצביעים עבור מפלגה i כאשר R1+R2+…+Rd=N. לוקחים מדגם של n אנשים. אז Xi הוא מספר הבוחרים של מפלגה i שהתקבל במדגם.